Optimized Design of Pultruded Composite Beams

Author:

Mantell Susan C.,Hoiness Brent1

Affiliation:

1. Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455

Abstract

An optimization method, based on classical lamination theory and a numerical search, for the minimum cost design of a glass fiber reinforced composite box beam is discussed. A sequential unconstrained minimization technique is utilized to find the lowest cost box beam which satisfies particular geometric, loading, and failure criteria. In formulating the optimization problem, the deflection and stresses of a box beam during loading must be predicted. A composite box beam model is presented which provides bending stiffness, midpoint deflection, and load at failure for the beam. The box beam model is validated by comparing model predictions with experimental data for a commercially available (proprietary) box beam design. An optimization code is developed, incorporating this box beam model, which yields a new box beam design with a 6 percent reduction in raw material cost as compared to the current commercial beam design. Similar beam bending models for circular and elliptical hollow cross sections are presented. A methodology to optimize these cross sections is discussed.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3