A study on curing processes and environmental effects for rapid composite repair

Author:

Elaldi Faruk1,Elaldi Pelin2

Affiliation:

1. Department of Mechanical Engineering, University of Baskent, Turkey,

2. Department of Industrial Engineering, Bilkent University, Turkey

Abstract

This article focuses on scarf joint comprised of vacuum-precured, vacuum-cocured, autoclave-procured, and autoclave-cocured composite patches bonded to autoclave- and vacuum-precured parent laminates. Autoclave- and vacuum-cured parent laminates and scarf joints were prepared and exposed to the same temperature and moisture environment for comparison. All specimens were loaded in tension at three temperatures. Interlaminar shear strength (ILSS) tests were also carried out for the parent materials. As noted, the tensile strength and ILSS decrease when the material has been exposed to moisture and tested at elevated temperature. But, no significant difference was reported for either tensile strength or ILSS between autoclave- and vacuum-cured materials. The room temperature repair efficiencies are reported for single-scarf repairs comprised of vacuum-cocured and vacuum-precured patches. These vacuum-cured repair efficiencies were found to be similar to the efficiency of the autoclave-precured patch repair. This result supports the feasibility of scarf joint repairs with precured or cocured patches under vacuum curing conditions in field-level facilities. Therefore, repairs with vacuum-precured or vacuum-cocured patches requiring less equipments seem to be a serious potential alternative to the composite patch repair requiring autoclave conditions which might be only available at depot-level maintenance centers.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3