Study of the Bending Properties in Gas-assisted Injection Molded Fiber-reinforced Nylon Parts

Author:

Chien Rean Der1,Cheng Nien-Tien1,Chen Shia-Chung2

Affiliation:

1. Mechanical Engineering Department, Nanya Institute of Technology, Chung-Li, Taiwan 32024, ROC

2. Mechanical Engineering Department, Chung Yuan University, Chung-Li, Taiwan 32023, ROC

Abstract

Glass fiber-reinforced Nylon plate parts designed with gas channels having five different types of cross section but with the same section were gas-assisted injection molded (GAIM). Effects of glass fiber content and geometrical factors introduced by various section shapes and the associated dimensions of gas channels on bending properties of GAIM parts were investigated via a bending test. Test results were also compared with those of conventional injection molded parts. Based on the measured results, it is found that gas-assisted injection molded parts show better bending properties including flexural strength, absorbed energy and bending stiffness than conventional injection molded parts. Alternatively, bending performance of GAIM parts increases when the content of glass fiber is increased. However, the fiber content of 15% has pretty good efficiency of bending performance. Meanwhile, for five gas channel designs, both gas channel designs attached with top rib (shapes D and E) show the higher bending stiffness and maximum bending load, correspondingly. So, generally speaking, these two gas channel designs provide the best enhancement in bending performance, however, parts with semicircular and rectangular gas channel designs (shapes A and B) can absorb more bending energy than the other designs. Alternatively, the flexural strength shows only slight influence from gas channel design, the deviation from average values less than 10%. The present study provides part designers with a design guideline for choosing the most effective gas channel design and fiber content to achieve a specific objective of part structural performance.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Reference28 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3