Impact modification of hybrid polypropylene composites with poly(vinyl alcohol) fibers

Author:

Várdai R12ORCID,Ferdinánd M12,Lummerstorfer T3,Pretschuh C4,Jerabek M3,Gahleitner M3,Faludi G12,Móczó J12,Pukánszky B12

Affiliation:

1. Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Eötvös Lóránd Research Network, Budapest, Hungary

2. Laboratory of Plastics and Rubber Technology, Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Budapest, Hungary

3. Borealis Polyolefine GmbH, Linz, Austria

4. Division Biobased Composites and Processes, Competence Centre for Wood Composites and Wood Chemistry (Wood K Plus), Linz, Austria

Abstract

Polypropylene (PP) hybrid composites were prepared by the combination of three reinforcing (carbon, glass, and wood) and a synthetic (PVA) fiber. Tensile and impact testing, acoustic emission measurements, and scanning electron microscopy (SEM) were used for the characterization of the composites as well as to follow deformation and failure processes. The results obtained prove that the novel concept of using synthetic fibers for impact modification can be applied successfully also with PVA fibers. The extent of improvement in impact strength depends on fiber type and content, but also on interfacial adhesion which strongly influences the local deformation processes occurring around the fibers during fracture. Both the reinforcing and the synthetic fibers take part in these processes and contribute to energy consumption. Debonding and the subsequent plastic deformation of the matrix consumes energy the most efficiently, but the fracture of the PVA fibers also requires energy; thus, PVA fibers improve impact resistance both at poor and good adhesion. This approach allows the design of materials for structural applications; the combination of a stiffness of 4–6 GPa and an impact resistance of 20–25 kJ/m2 exceeds the properties of most PP composites available on the market.

Funder

National Scientific Research Fund of Hungary

New National Excellence Program of the Ministry for Innovation and Technology

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3