Robust Multiobjective Controllers for Smart Structures

Author:

Rao Vittal S.,Butler Robert1,Zhao Wei2

Affiliation:

1. Department of Electrical Engineering and Intelligent Systems Center, 320 ERL Bldg., University of Missouri-Rolla, Rolla, MO 65401, U.S.A.

2. General Motors Corporation, Warren, MI 48089

Abstract

Flexible smart structures are large mechanical structures with applications in which specific performance characteristics are desired in the presence of parameter variations and disturbances. These structures tend to have severe controller effort restrictions and tightly spaced lightly damped modes. When designing controllers for smart structures, H2 controllers are well suited for control effort restrictions and closed loop performance specifications while H. controllers are better suited for modeling uncertainties. This paper examines the application of H2 /H,,. controller design methodologies to smart structures. A unique feature of mechanical distributed systems is that state space systems can be determined from finite element models (FEM) in which the states have physical significance. For certain systems, these states can be directly measured by using a distributed PVDF film appropriately shaped and applied to the structure. This full state feedback system allows for the implementation of H2 /Ho:: full state feedback algorithms. The development of a control system implementing this type of algorithm is described for a simple cantilever beam. In addition, a H2 /HOD algorithm developed by Bernstein and Haddad is investigated for the cantilever beam. This method does not require state measurement, but the controller design algorithm is slightly more complicated. This algorithm requires the solution of one algebraic Riccati equation and two coupled algebraic Riccati equations which are solved iteratively.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3