Experimental investigation on energy absorption capability of 3D printed onyx nested rings under lateral loading

Author:

Yalçın Muhammet Muaz1ORCID

Affiliation:

1. Department of Mechanical Engineering, Sakarya University, Sakarya, Turkey

Abstract

This study presents a focused experimental exploration into the energy absorption characteristics and failure mechanisms of nested circular rings under lateral loading. The rings were 3D printed using the fuse deposition modeling method with an onyx material containing chopped carbon fiber. The dimensions of the rings were determined to be the same in width and thickness, while the diameter had four different values. The samples of nested rings consist of at least two and up to five individual rings. These samples were obtained by using individual rings in various different sequences and orders. Two different configurations for each nested sample type were also studied to observe the effect of the ring sequences and orders on the energy absorption capability. It is concluded from the results that even though the single ring with the smallest diameter has the highest force values, the highest energy absorption and specific energy absorption values were obtained in another single ring. The alignment of the single rings has a superior effect on the energy absorption capacity of the nested samples. Also, a gain in absorbed energy was observed in nested samples due to the interaction between the single rings. This interaction showed that the algebraic summation of the energy values of single rings used in a nested sample was lower than the energy value of the same nested sample. In the nested samples, the absorbed energy increased proportionally to the number of single rings. However, the crashworthiness parameters were affected quite differently from the energy absorption capacity. While the highest energy absorption values are obtained in nested samples with five single rings, other nested samples reached the highest values in terms of some of the crashworthiness parameters. The NR5-A sample absorbed 52% and 88% higher energy compared to the same combination of nested samples, which contain four and three single rings, respectively. Additionally, the specific energy absorption value of this sample is 32% and 47% higher than the same nested samples mentioned above. Considering these results, it can be expressed that the NR5-A sample is the best design in terms of an ideal energy absorption structure.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3