Comparison of the impact damage resistance of non-hybrid and intra-ply hybrid carbon/E-glass/polypropylene non-crimp thermoplastic composites

Author:

Kaya Gaye1ORCID

Affiliation:

1. Department of Textile Engineering, Faculty of Engineering and Architecture, Kahramanmaraş Sutcu Imam University, Kahramanmaraş, Turkey

Abstract

This study aims to compare the low-velocity impact and post-impact properties of intra-ply hybrid carbon/E-glass/polypropylene non-crimp thermoplastic composites with non-hybrid carbon/PP and E-glass/PP non-crimp thermoplastic composites. Impact test was performed at four energy levels as 15 J, 30 J, 45 J and 60 J. Post-impact properties of hybrid thermoplastic composites were tested by compression after impact method for each energy level to understand the impact damage tolerance of intra-ply hybrid carbon/E-glass/PP non-crimp thermoplastic composites. The effect of hybridization on energy absorption of composites was not significant, while C-scan results showed that the intra-ply hybrid non-crimp thermoplastic composites had smaller impact damage areas in comparison to the non-hybrid samples. Compression and compression after impact tests results confirmed that the intra-ply hybridization increased the toughness of the composite laminates. Also, the residual compression strength/modulus increased with hybridization which indicated to damage tolerance.

Funder

Kahramanmaras Sutcu Imam University Scientific Research Unit

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3