Modal testing of epoxy carbon–aramid fiber hybrid composites reinforced with silica nanoparticles

Author:

Mansour G1,Tsongas K1,Tzetzis D2

Affiliation:

1. Department of Mechanical Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece

2. International Hellenic University, Thessaloniki, Greece

Abstract

In the current paper, the modal characterisation of aramid–carbon fiber hybrid composites (ACFRP) and ACFRP reinforced with silica nanoparticles (nACFRP) is investigated through the analytical-experimental transfer function method. The modal properties, such as resonant frequencies and modal loss factors, are measured by vibrating cantilever beam specimens with an impact hammer, while the vibratory response is detected through an acceleration transducer. The procedure for the identification of analytical-experimental transfer functions is carried out using a genetic algorithm by minimising the difference between the measured response from tests and the calculated response, which is a function of the modal parameters. The analytical transfer functions provide a substructuring process to identify modes, as a function of damped natural frequencies and loss factors of a complex structure, and it is insensitive to experimental noise as well as the modal coupling effect. The validation of the proposed method is verified with 10 degrees of freedom mass-spring dashpot model. The effectiveness of the proposed method is demonstrated by investigating the static and dynamic behaviour of the ACFRP and nACFRP specimens. Results indicate that the inclusion of nanosilica particles increase the stiffness of the ACFRP, although the damping response of the reinforced specimens is moderately improved.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3