Experimental characterization of the quasi-static and dynamic piezoresistive behavior of multi-walled carbon nanotubes/elastomer composites

Author:

Penvern Nicolas1,Langlet André1ORCID,Gratton Michel2,Mansion Marcel3,Aït Hocine Nourredine2

Affiliation:

1. Laboratoire Gabriel Lamé, Univ. Orléans, France

2. Laboratoire Gabriel Lamé, INSA-CVL, France

3. ATCOM Télémétrie, Chécy, France

Abstract

Multi-walled carbon nanotube (MWCNT)/elastomer composites exhibit a piezoresistive behavior, i.e. their resistivity changes when they are subjected to mechanical loading. Thus, these materials can be used as strain or pressure sensors. In this paper, the effect of carbon nanotube weight fraction on the sensitivity and repeatability of the electrical response of multi-walled carbon nanotube/ethylene–propylene–diene monomer composites is investigated, under quasi-static and dynamic compression (using split Hopkinson pressure bars). It was found that multi-walled carbon nanotube weight fraction and the strain rate have a major influence on the piezoresistivity of such composites. Although all samples exhibited a good repeatability of their electrical response under quasi-static cyclic compression, those with a lower multi-walled carbon nanotube weight fraction had a higher sensitivity to strain. An increase in the electrical resistance during compression was observed under both quasi-static and dynamic compression. Reversible movements of multi-walled carbon nanotube in the transverse direction of compression increased the average inter-multi-walled carbon nanotube distance under quasi-static compression, leading to higher values of resistance. After the dynamic tests, the Young’s modulus of the composites decreased by about 45% and the electrical resistance increased a hundredfold, indicating damage induced by dynamic loading.

Funder

Région Centre Val de Loire

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3