Blast behaviour of fibre reinforced polymers containing sustainable constituents

Author:

Gabriel Sherlyn1,Langdon Genevieve S12ORCID,von Klemperer Christopher J3ORCID,Kim Yuen Steeve Chung1

Affiliation:

1. Blast and Impact Survivability Research Unit (BISRU), Department of Mechanical Engineering, University of Cape Town, Rondebosch, South Africa

2. Department of Civil and Structural Engineering, University of Sheffield, Sheffield, UK

3. Department of Mechanical Engineering, University of Cape Town, Rondebosch, South Africa

Abstract

As the use of more sustainable natural fibres and bio-based resins in fibre reinforced polymers (FRPs) becomes more widespread, their susceptibility to damage due to explosive detonation needs to be evaluated. In this paper, flax and jute FRP panels were blast tested and compared to equivalent mass glass FRP panels. Comparisons were made between flax and glass FRPs manufactured using a synthetic Prime 20 epoxy and a Super Sap epoxy resin containing bio-based raw materials. The transient measurements revealed that all the FRPs exhibited high-peak displacements and viscously damped elastic vibrations. The results showed the predominance of fibre strength and stiffness, and the lesser influence of resin system. The presented modified non-dimensional analysis approach could be extended to predict peak displacement of FRPs during blast events in the future. The failure mode progression for each panel type was identified, providing unique and detailed insights for designers and blast protection engineers. The work should prove valuable to blast protection engineers considering the effects of explosive detonations on structures containing FRPs.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3