Affiliation:
1. MUL2 Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Torino, Italy
Abstract
This work presents results of numerical simulations to investigate the effect of different void percentages on composite materials’ Coefficient of Thermal Expansion (CTE) and local stress fields. A random distribution of voids is considered within the Representative Volume Element (RVE) matrix, and different types of microstructures are considered, including square-packed and randomly distributed fibers. The use of a higher-order beam model within the framework of Carrera Unified Formulation (CUF) leads to a Component-Wise (CW) approach, resulting in an accurate, 3D description of the cross-section although using a 1D formulation. Numerical results for different fiber volume fractions and void concentration percentages demonstrate the agreement of the computed effective coefficients of thermal expansion of the present micromechanical thermoelastic model with references from the literature. The local stress fields are affected by voids, with higher effects over the matrix. Furthermore, higher void fractions lead to higher variability of stress peaks.
Subject
Materials Chemistry,Polymers and Plastics,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献