Mechanical properties of pultruded glass fiber reinforced plastic after freeze–thaw cycling

Author:

Aniskevich K1,Korkhov V1,Faitelsone J1,Jansons J1

Affiliation:

1. Institute of Polymer Mechanics, University of Latvia, Riga, Latvia

Abstract

The use of pultruded fiber-reinforced plastics in civil infrastructure requires the long-term prediction of their mechanical properties, which should be based on understanding and estimating the processes in the structure under action of aggressive environmental factors: humidity and freeze–thaw cycles. This article reports on results of short-term exposure to severe freeze–thaw cycling in the temperature range from –30°C to 20°C of polyester-based glass fiber reinforced plastic both dry and wet. The effect of freeze–thaw cycling of flat specimens cut from I-beam pultruded profile was estimated by use of three-point-bending tests and dilatometric investigation in the temperature range from 20°C to 125°C. It was found that freeze–thaw cycling results in an increase of flexural modulus and decrease of ultimate strength, and strain. The effect is more pronounced for dry material than of moistened, but it is comparable with the data spread. Linear thermal expansion coefficients in three principal axes of the composite are different: the highest is in transverse to fiber axis out-of-layers plane. The linear thermal expansion coefficients of wet material are higher than of dry. Heating up to 125°C and subsequent cooling results in a residual (shrinking) volume strain. The changes of flexural characteristics, linear thermal expansion coefficients, and shrinking strain after heating–cooling after freeze–thaw cycling are mediated by the change of moisture content in the material specimens.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3