Acrylonitrile butadiene styrene – carbon nanotubes nanocomposites for 3D printing of health monitoring components

Author:

Paleari Lorenzo1ORCID,Bragaglia Mario1ORCID,Mariani Matteo1,Nanni Francesca1

Affiliation:

1. Department of Enterprise Engineering “Mario Lucertini”, and INSTM RU Roma – Tor Vergata, University of Rome “Tor Vergata”, Rome, Italy

Abstract

In this paper self-sensing nanocomposite formulations made of acrylonitrile butadiene styrene and different loading (3, 5 and 10 wt%) of multi-walled carbon nanotubes have been produced and 3D printed via fused filament fabrication. The nanocomposites have been characterized from a rheological, mechanical, thermal and electrical point of view to assess the strain-sensing properties. All the samples show a piezoresistive behaviour and the electrical resistance changes when a stress is applied. The gauge factor, measure of the sensitivity, for ABS 3CNT, ABS 5CNT and ABS 10CNT are 11.36, 3.21 and 1.62, respectively. The ABS 3CNT samples have shown the best self-sensing performances with high sensitivity and this formulation has been used for producing a health-monitoring 3D-printed smart structure where the active material is placed locally in the structure. The 3D-printed structure itself is able to monitor the strain and hence the stress level to which is subjected with a gauge factor of 1.5. A finite element analysis helps to explain the reason for reduced sensitivity namely the placement of the sensing layer.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3