Damping properties of para-phenylene terephthalamide pulps modified damping materials

Author:

Yuan Baihua1,Chen Meng2,Liu Yu2,Zhao Shexu1,Jiang Heng2

Affiliation:

1. Department of Engineering Mechanics, School of Naval Architecture, Ocean & Civil Engineering, Shanghai Jiaotong University, Minhang, Shanghai, People’s Republic of China

2. Key Laboratory of Microgravity, Institute of Mechanics, Chinese Academy of Sciences, Beijing, People’s Republic of China

Abstract

A series of para-phenylene terephthalamide pulp modified damping materials were prepared. The dynamic mechanical properties, differential scanning calorimetry, vibration damping properties, vulcanization property, tensile strengths as well as scanning electron microscopy micrographs of the damping materials were studied theoretically and experimentally. The dynamic mechanical properties of para-phenylene terephthalamide pulp modified damping materials were also compared with aramid short-cut fiber, E-glass staple fiber and carbon fiber powder modified damping materials. The results showed that para-phenylene terephthalamide pulp modified damping materials exhibited the best damping property and highest modulus in comparison with the other types of fibers. The storage modulus ( E′), loss modulus ( E″) and tensile strength of the materials were all increased significantly with increasing pulp content, and this trend was significantly greater in machine direction rather than in cross-machine direction. The second, third and fourth modes modal loss factors (η) of the steel beams coated with para-phenylene terephthalamide pulp modified damping materials increased substantially up to a maximum, and then became stable with increasing pulp amount. The optimal η in machine direction was achieved as the mass ratio of butadiene-acrylonitrile rubber to para-phenylene terephthalamide pulp was 100:30. Excellent damping property was mainly attributed to the extremely high interfacial contact area which significantly improved the efficiency of energy dissipation of internal friction, interfacial sliding and dislocation motion between para-phenylene terephthalamide pulps and butadiene-acrylonitrile rubber chains. Since para-phenylene terephthalamide pulp modified damping materials offer a high E′, excellent vibration damping properties, broad damping temperature and frequency ranges, it is ideal for free-damping structures which are widely utilized in industrial vibration and noise control applications.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3