Experimental and numerical investigations of 3D-printed glass fiber reinforced onyx composites with infill patterns

Author:

Nikiema Daouda1ORCID,Balland Pascale1,Sergent Alain1

Affiliation:

1. Université Savoie Mont Blanc, SYMME, Annecy, France

Abstract

The lightweighting of 3D-printed components is achievable by using infill patterns and the ability to adjust their density. In this context, performing a mechanical characterization and numerical simulation of the printed parts is imperative. This manuscript conducts experimental and numerical investigations on 3D-printed composites (onyx/glass fibers) that consider the infill pattern, walls, roofs, and floors of the samples. A numerical homogenization approach was adopted to identify the elastic mechanical parameters of the infill patterns. The results demonstrated the homogenization tool’s effectiveness in predicting the mechanical parameters of the infill patterns. Relationships correlating the infill density and each homogenized mechanical parameter were established, enabling the calculation of each mechanical parameter based on the used infill pattern and its density without reiterating the mechanical homogenization. Regarding the simulation of specimens under tension and flexure, the results indicated that the prediction error of the elastic modulus ranged between 2.87% and 11.84% for tension and between 4.42% and 8.45% for 3-point bending. The simulation of 3D-printed composites, considering all constituent elements of the specimens, allowed for examining stress fields in each element and identifying areas of highest and lowest stress. These findings can contribute to predicting the behavior of 3D-printed composites in the context of addressing engineering problems.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3