Study of over-examination on tire induced by pressure correction process in flywheel tests

Author:

Wang Congwen12ORCID,Xiao Chi1,Feng Yihui1,Dai Yujing3,Wang Jun12,Huan Yan4,Huan Yong12

Affiliation:

1. State Key Laboratory of Nonlinear Mechanics (LNM), Institute of Mechanics, Chinese Academy of Sciences, Beijing, China

2. School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China

3. School of Aerospace Engineering, Beijing Institute of Technology, Beijing, China

4. State Key Laboratory of Polymer Physics and Chemistry and Polymer Composite Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China

Abstract

In this paper, the strain energy density (SED) is used to study the over-examination to tire in flywheel test induced by pressure correction process. Flywheel test is the main method for evaluating tire durability, which cannot be measured on flat ground due to the variable road conditions. “Pressure Correction” is a necessary step in flywheel tests, but this process can lead to an over-examination of tire durability, which means the tire durability will be underestimated. However, it is impossible to obtain the tire durability from ideal flat ground test, so this paper utilizes the finite element method (FEM) to simulate the tire rolling condition on flat ground and differently sized flywheels, and the SED is used to evaluate the over-examination of tire durability in flywheel test. According to the results, a flywheel with too small diameter has a large amount of over-examination, and the amount caused by a large flywheel is acceptable. This methodology can be a guideline to assess the over-examination on different sized flywheel tests relative to the flat ground, and for the certain tire in this study, flywheels with 3–5 times the tire diameter appear to have an acceptable over-examination.

Funder

Strategic Priority Research Program of the Chinese Academy of Sciences

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3