Investigation on atomic oxygen erosion resistance of self-assembly film at the interphase of carbon fiber composites

Author:

Jinmei He1,Nan Zheng1,Zhenming Ye1,Yudong Huang1

Affiliation:

1. School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin, China

Abstract

This paper proposes a new method based on molecular self-assembly on carbon fiber surface in order to improve atomic oxygen erosion resistance for the interface of carbon fiber/epoxy composites. The self-assembly films were characterized by surface-enhanced Raman scattering and X-ray photoelectron spectroscopies. The results indicated that two aromatic thiols indeed chemisorbed onto the Au-plated carbon fiber surfaces in the form of thiolate species via the strong S-Au coordination bond and well-organized with a flat orientation structure. From interfacial shear strength data and atomic force microscopy observation, it is noticed that, after carbon fiber surfaces were assembled with 4-hydroxythiophenol and 4-aminothiolphenol, the atomic oxygen erosion resistance were better than that of untreated and Au-plated carbon fiber/epoxy micro-composites, especially, the micro-composites modified by 4-aminothiolphenol. It will be an effective solution to the two major issues of enhancement of interfacial bonding force and interfacial atomic oxygen erosion resistance.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3