Affiliation:
1. Birla Institute of Technology and Science (BITS) Pilani, Rajastan – 330 031, India
2. Fiber Reinforced Plastics Division National Aerospace Laboratories (NAL) Kodihalli, Bangalore – 560 017, India
Abstract
The hygrothermal diffusion and degradation behavior of a high-temperature cured glass–epoxy (Epoxy Novolac – EPN) composite system was studied under two environmental conditions (i.e. 323 K and 343 K immersion in distilled water). Samples immersed at 343 K showed higher diffusivity (Dc) value and lower saturation time (tm) than those of 323 K immersion while the maximum moisture content (Mm) remained the same, good Fickian correlation were observed for the composite system. As regards the degradative effects, the glass transition temperature (Tg) of the composite decreased with increased moisture content showing a maximum drop of 30 C at full saturation, while the mechanical properties (ILSS and IPS) of saturated specimens degraded upto 26 and 33% respectively. Further these mechanical properties obtained at 70 C/85%RH test condition showed good correlations with those predicted by a theoretical equation (Chamis et al. An Intergrated Theory for Predicting the Hydrothermo Mechanical Response of Advanced Composite Structural Components, Lewis Research Center, Cleveland, Ohio, NASA Technical Memorandum 73812).
Subject
Materials Chemistry,Polymers and Plastics,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献