Post-buckling of variable stiffness curvilinear fibre-reinforced general lay-up composite beams by sinusoidal shear flexible theory

Author:

Manickam Ganapathi1ORCID,Polit Olivier2,Haboussi Mohamed3,Chettiar Alfred1,Kulkarni Vedang1,Gunasekaran Vijay4

Affiliation:

1. School of Mechanical Engineering, Vellore Institute of Technology, Vellore, India

2. LEME, UPL, Univ. Paris Nanterre, Nanterre, France

3. Université Paris, Paris, France

4. National Institute of Technology Karnataka, Mangalore, India

Abstract

The mechanical post-buckling behaviour of variable stiffness layered composite beams reinforced by curvilinear fibres subjected to compressive loads is investigated here using a sine function-based shear flexible beam model. The neutral axis stretching force stemming from the axial movement restraints is accounted for through von Karman’s assumption based geometrical nonlinearity. Furthermore, the modified beam constitutive equation arising from the consideration of the Poisson’s effect is introduced in the formulation for the laminated beam analysis with general lay-up or ply sequences. The governing equations incorporating the incremental stiffness matrices are formed through the minimization of total potential energy principle and are solved by numerical method. The solutions for the developed governing equations are evaluated iteratively based on eigenvalue analysis and the characteristics of post-buckling of laminated beams can be inferred through the relationship between the beam deflection level and post-buckling axial load. An in-depth analysis selecting many design parameters for instance lamina’s curvilinear fibre angles, beam slenderness ratio, lay-up and edge conditions, load type and so on is dealt with in bringing out the behaviour of variable stiffness laminated beam in linear and post-buckling regions. Also, the influence of flexible end supports by restraining elastically against ends rotation is studied on the beam elastic stability behaviour.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3