Modeling and Prediction of Erosion Response of Glass Reinforced Polyester-Flyash Composites

Author:

Patnaik Amar1,Satapathy Alok2,Mahapatra S.S.2,Dash R.R.3

Affiliation:

1. Department of Mechanical Engineering, National Institute of Technology, Hamirpur 177005, India,

2. Department of Mechanical Engineering, National Institute of Technology, Rourkela 769008, India

3. Department of Mechanical Engineering, G.I.E.T, Gunupur 765022, India

Abstract

Solid particle erosion of polymer composites is a complex surface damage process, strongly affected by material properties and operational conditions. To avoid repeated experimentation, it is important to develop predictive equations to assess material loss due to erosion wear under any impact conditions. This paper presents the development of a mathematical model for estimating erosion damage caused by solid particle impact on flyash filled glass fiber reinforced polyester composites. The model is based upon conservation of particle kinetic energy and relates the erosion rate with composite properties and test conditions. Another correlation derived from the results of Taguchi experimental design is proposed as a predictive equation for erosion wear of these fiber reinforced composites. Further, considering the complexity and high degree of nonlinearity in the erosion process, an artificial neural networks (ANN) technique is implemented as an effective tool for prediction of wear response of these composites in a larger space. Finally, the results of a mathematical model and the ANN model are compared with those obtained from experimentation.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3