Environmental and Mechanical Fatigue of Wind Turbine Blades Made of Composites Materials

Author:

Caprile Carlo,Sala Giuseppe,Buzzi Alberto1

Affiliation:

1. Dipartimento d'Ingegneria Aeronautica, Politecnico di Milano, Via Golgi 40 Milano, Italy

Abstract

The problem relevant to fatigue design and analysis of wind turbine blades made of composite materials is faced; mid-size single-blade wind turbine is taken into consideration. Static and fatigue load conditions are defined; hygrothermal conditions are identified as well, in terms of yearly statistical distribution of wind speed and air temperature, relative humidity, solar radiation and atmospheric pressure daily variations, the occurrence of low-energy impacts due to hailstones is also considered. A FEM structural analysis is carried out to compute stress and strain distributions all along the blade: hot spots are identified; the stress critical values, along with fatigue spectra, are used to design fatigue tests. Some preliminary tests are performed on composite specimens previously dry and wet conditioned, as well as on low-energy impacted coupons, considering both mechanical and hygrothermal effects; finally some preliminary fatigue tests on both adhesive and riveted composite joints are carried out.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3