Affiliation:
1. Department of Mechanical Engineering, Kongu Engineering College, Tamilnadu, India
2. Mechanical Engineering Research Institute, Korea Advanced Institute of Science and Technology, South Korea
Abstract
Graphene has drawn a great attention in the recent research innovations mainly due to its structural geometry, which is composed of one-atom thick planar sheet of hexagonally arrayed sp2 carbon atoms. Development of nanocomposites utilising graphene as the nanofiller offer desired properties to the added polymer matrix. Furthermore, incorporation of functional groups such as hydroxyl, epoxy, carboxyl, etc. on the basal plane of graphene enhances the interaction with the polymer matrices. Better interaction between the nanofiller and the polymer leads to exfoliation of the nanofiller in the matrices, which indeed significantly improves the physical, mechanical, thermal, electrical, electronic properties, etc., of the polymer. The review article explores the recent research findings on the development of polymeric nanocomposites utilising pure and functionalised graphene. The article focuses on the method of synthesis of graphene and functionalised graphene, followed by their characterisation methods and inferences. It also summarises the routes for the preparation of graphene and modified graphene-based polymer nanocomposites. The work highlights the enhancement of properties observed due to the addition of graphene and modified graphene to the polymer matrices. Several surface modifications done on GNS in order to achieve better dispersion of the same in the polymer matrix has been discussed. The review article portrays the recent research reports on graphene and modified graphene-based polymer nanocomposites. Techniques such as cryomilling, latex technology and lyophilisation as applied to polymer nanocomposites have been reviewed. Also, each of the literatures has been reviewed under the synthesis of filler and the preparation of the polymer nanocomposite separately which would serve as a guidance for future research. Literatures in which different carbon nanofillers have been compared to find the optimum filler has also been discussed.
Subject
Materials Chemistry,Polymers and Plastics,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites
Cited by
132 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献