Effect of MAPP as Coupling Agent on the Performance of Sisal–PP Composites

Author:

Mohanty S.1,Nayak S. K.1,Verma S. K.2,Tripathy S. S.3

Affiliation:

1. Central Institute of Plastics Engineering & Technology Bhubaneswar – 751 024, India

2. Central Institute of Plastics Engineering & Technology Guindy, Chennai – 600 032, India

3. The Uranium (Society for the Advancement of Education and Research in Chemical Sciences) Friends Colony, Cuttack – 753 001, India

Abstract

Hybrid composites consisting of polypropylene (PP) and short sisal fibers were prepared by melt mixing followed by compression molding. Various types of chemical treatments such as alkali treatment, cyanoethylation, coupling agent treatment etc. were performed to improve the interfacial adhesion between the fibers and PP matrix. Variations in fiber loading, fiber length, coupling agent concentration and its treatment time period as a function of mechanical strength were studied. The morphology of the interface region was investigated through SEM analysis. Mechanical tests showed that the composites treated with MAPP of grade HC5 exhibited optimum strength. Nearly 50% increase in tensile, 30% in flexural and 58% increase in impact strengths were obtained in the case of composites treated with 1% MAPP concentration. Accelerated weathering and water absorption behavior of the MAPP-treated composites further confirmed an efficient fiber–matrix adhesion. Thermal measurements through DSC were also investigated to corroborate the findings of the mechanical data.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3