Affiliation:
1. Department of Civil Engineering Washington University St. Louis, MO 63130
2. Department of Civil Engineering The University of Mississippi University, MS 38677
Abstract
A computational simulation of the internal damage accumulation which causes the creep-rupture phenomenon in filamentary composite materials is developed. The creep-rupture process involves complex interactions between several damage mechanisms. A statistically-based computational simulation using a time-differencing ap proach is employed to model these progressive interactions. The finite element method is used to calculate the internal stresses. The fibers are modeled as a series of bar elements which are connected transversely by matrix elements. Flaws are distributed randomly throughout the elements in the model. Load is applied, and the properties of the individual elements are updated at the end of each time step as a function of the stress history. The simulation is continued until failure occurs. Several cases, with different initial flaw dis persions, are run to establish a statistical distribution of the time-to-failure. The calcula tions are performed on a supercomputer. The simulation results compare favorably with the results of creep-rupture experiments conducted at the Lawrence Livermore National Laboratory.
Subject
Materials Chemistry,Polymers and Plastics,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献