Identification and quantitation of processing parameters controlling the surface quality of carbon fibre-reinforced composites

Author:

Kunze Johannes1,Mahrholz Thorsten1,Sinapius Michael1

Affiliation:

1. German Aerospace Centre (DLR), Institute of Composite Structures and Adaptive Systems, Braunschweig, Germany

Abstract

The paper investigates the effect of essential manufacturing parameters on the surface quality of uncoated carbon fibre-reinforced composites used as car body panels with visible surfaces (Class A properties). A series of carbon fibre-reinforced composites laminates were prepared by the resin transfer moulding technique varying the fibre volume content (30 to 60 %), reinforcement material (woven fabrics vs. unidirectional fibre reinforcements), curing temperatures (40℃ to 120℃), additives (SiO2 nanoparticles as matrix fillers) and using a surface finish applied as an in-mould coating. Laminate surfaces were characterised by roughness analysis (white-light interferometry) and wave-scan measurement to quantify the influence of the different manufacturing parameters on the surface quality. Especially, the used resins were intensively characterised concerning thermal properties and total resin shrinkage. These results correlate very well with the performed analysis of surface roughness. It is found that the fibre print through effect is significantly reduced by realising low total resin shrinkage and an even distribution of resin and fibres at the surface. Thus, using of unidirectional fibre reinforcement (no weft or sewing threads; very fine filaments), low curing temperatures (slow curing processes) and an in-mould coating are most successful for reduction of fibre print through effect and getting surface similar to Class A properties. In addition, the surface quality is quite positively affected by the application of nanoparticles and also strongly controlled by roughness of tooling.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3