Environmental effects on viscoelastic behavior of carbon fiber/PEKK thermoplastic composites

Author:

Mazur Rogério L12,Oliveira Pedro C3,Rezende Mirabel C1,Botelho Edson C2

Affiliation:

1. Divisão de Materiais – IAE, Departamento de Ciência e Tecnologia Aeroespacial (DCTA), São José dos Campos, São Paulo, Brazil

2. Materials and Technology Department – Universidade Estadual Paulista (UNESP), Guaratinguetá, São Paulo, Brazil

3. Departamento de Química – Universidade de São Paulo (USP), Lorena, São Paulo, Brazil

Abstract

In the last years, thermoplastic composites have been introduced as structural materials for high performance aerospace applications. However, these materials can present problems when exposed to moisture, temperature, and UV radiation, and besides it may occur as the synergy among the main degradation mechanisms. Among the thermoplastic composite materials, carbon fiber reinforced poly(ether-ketone-ketone) (PEKK) laminates have shown excellent balance of properties, including high glass transition temperature, high strength, stiffness and fracture toughness values, low moisture absorption, and good environmental resistance. The aim of the present work was to evaluate the influence of the environmental effect on the viscoelastic behavior and glass transition temperature of carbon fiber reinforced PEKK thermoplastic composites. In this work, the effects of environmental degradation on the viscoelastic properties of this composite material were studied by dynamic mechanical analyses. The most significant change was observed for the UV radiation accelerated weathering conditioning effects. A decrease of the storage modulus from 40 to 10 GPa and the Tg from 147 to 105℃ is observed, which decreases consequently the composite stiffness and the service temperature after exposed environmental effects. A synergetic degradation mechanism between UV radiation accelerated weathering test and hygrothermal conditioning is clearly verified.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3