Influence of selected submicron inorganic particles on mechanical and thermo-mechanical properties of unsaturated polyester/glass composites

Author:

Datta Janusz1,Włoch Marcin1

Affiliation:

1. Chemical Faculty, Department of Polymer Technology, Gdańsk University of Technology, G. Narutowicza Str. 11/12, 80-233 Gdansk, Poland

Abstract

In this paper, the influence of different submicron-scaled particles (zinc oxide, titanium dioxide, or silica) on mechanical and thermo-mechanical properties of unsaturated polyester matrix composites reinforced with glass fabric was investigated. Surface morphology of obtained composites was also examined. At first inorganic particles were mechanically dispersed into unsaturated polyester resin system as per the calculated weight ratio (2 or 4 wt% of polymer matrix). For prepared liquid dispersions viscosity was measured. Composites were produced by using hand lay-up method and contained 39–41 wt% of glass fibers. The flexural and dynamic mechanical analyses were carried out for each group of fabricated polyester/glass composites. All results were compared with the control samples (without submicron particles). It was found that addition of 2 wt% ZnO or TiO2 to unsaturated polyester resin enhanced the flexural strength and flexural modulus of composites. Dynamic mechanical analysis showed the increase of storage and loss modulus. Similar effect of submicron-scaled inorganic particles on Tg value of composites was observed. The scanning electron microscopic analysis of prepared composites showed good dispersion of submicron particles in polymer matrix and generally absence of voids was also observed.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3