Bond–slip behavior of fiber-reinforced polymer/concrete interface in single shear pull-out and beam tests

Author:

Mohammadi Tayyebeh1,Wan Baolin2,Harries Kent A3

Affiliation:

1. Precast Engineering Company, Brookfield, WI, USA

2. Department of Civil, Construction, and Environmental Engineering, Marquette University, Milwaukee, WI, USA

3. Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA, USA

Abstract

It has been assumed that the fiber-reinforced polymer/concrete interface is subjected to in-plane shear condition when intermediate crack debonding failure occurs. Therefore, the single shear pull-out test results are often used to predict the intermediate crack debonding failure in beams. In this study, the behavior of fiber-reinforced polymer-strengthened concrete beams and single shear pull-out specimens were studied experimentally and numerically. The bond–slip behavior of the fiber-reinforced polymer/concrete interface was obtained by single shear pull-out and beam tests. In all beam specimens, a concrete wedge located at the edge of the notch detached with the fiber-reinforced polymer debonding failure. This phenomenon shows that the initiation of debonding is due to a diagonal crack formation close to the major flexural/shear crack inside the concrete. The diagonal crack formation is due to a local moment at the tip of the notch. This causes the different stress state and slip of the fiber-reinforced polymer/concrete interface of beam specimens from that of the pull-out specimens. It is found that the bond–slip relation obtained from the pull-out test does not represent the bond–slip relation of the fiber-reinforced polymer/concrete interface in the fiber-reinforced polymer-strengthened concrete beams, and it cannot be directly used for predicting the load capacity of the fiber-reinforced polymer-strengthened concrete beams.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3