Degradation of recycled flame-retardant GFPBT during extrusion: Effect of screw types on the extrudate properties

Author:

Peng HQ1,Yan JH2,Zhang SD23,Mo WJ2

Affiliation:

1. The Second Research Institute of CAAC, Chengdu, China

2. College of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, China

3. State Key Laboratory of Polymer Materials Engineering, Chengdu, China

Abstract

For both environmental and economic consideration, the use of recycled glass fiber-reinforced flame retardant poly(butylene terephthalate) (RGFFRPBT) is of significant importance. In the study, the mechanical, thermal, rheological, and flame retardant properties of RGFFRPBT granulated by different extruders were evaluated. To explore the relationship between the screw structure and the properties of the extruded RGFFRPBT, the carboxyl content (CC), and intrinsic viscosity ([Formula: see text]) of the processed polymer and the average GF length ([Formula: see text]) were investigated. Increasing the shear force of the extruder caused both [Formula: see text] and [Formula: see text] to decrease, whereas the CC increase. Variations of these parameters had a different effect on the properties of the RGFFRPBT. Both of mechanical and thermal properties of extruded RGFFRPBT deteriorated with the increase of screw shear force, while the thermal flowability improved. Furthermore, all the extruded products were classified as V-0 with LOI of 32.2%, and passed the glow wire ignition temperature test (GWIT). The results confirmed that the degradation of properties of RGFFRPBT can be controlled by screw-type extrusion. RGFFRPBT granulated by a single screw extruder with 30 mm diameter and length to diameter ratio of 30 was found to produce material with properties meeting the requirements for electronic and electrical applications.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3