Non-uniform capillary model for unidirectional fiber bundles considering pore size distribution

Author:

Fang Liangchao1,Jiang Jianjun1,Wang Junbiao1,Deng Chao1

Affiliation:

1. Shanxi Engineering Research Center for Digital Manufacturing Technology, Northwestern Polytechnical University, Xi’an, P. R. China

Abstract

Capillary rise affects void inclusion during the impregnation of fiber reinforcements in resin transfer molding. A new model of effective capillary radius has been developed to investigate the effect of pore size distribution on capillary flow in unidirectional fiber bundles. With the image analysis method, the statistical results showed that the pore size distribution could be very different even for the same fiber volume fraction. Then, the classical Washburn equation, in conjunction with different models for calculating effective capillary radius, was applied to predict the capillary rise rate. Compared with the experimental results, we found that the new model performed better than traditional models where the effective capillary radius was obtained using average pore radius or hydraulic radius.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3