Fabrication of mechanical durable novolac matrix composites with recycled and cost-effective candle-soot nano particles

Author:

Kocaman Mücahit1ORCID,Güler Onur1ORCID,Çuvalcı Hamdullah1ORCID,Akçay Serhatcan Berk1ORCID

Affiliation:

1. Department of Metallurgical and Materials Engineering, Karadeniz Technical University, Trabzon, Turkey

Abstract

Novolac matrix composites are crucial due to their exceptional resistance to heat, chemicals, and mechanical stress. These advanced materials find applications in aerospace, electronics, and automotive industries, providing high-performance solutions for components requiring superior durability and reliability. In this context, the microstructure, thermal, phase, and mechanical properties of the composites obtained as a result of the recycling-oriented reinforcement of the waste candle-soot (CS) reinforcement at the rate of 1 wt% to the pure novolac (PN) and shaping with the hot press method were examined in detail at first time in the literature. While microstructural properties and fracture mechanisms were investigated by scanning electron microscopy (SEM), thermal properties were investigated by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The results obtained provided critical findings as the composite hardness, tensile strength, and flexural strength values were 3.28, 2.47, and 3.21 times higher than PN, respectively. CS-reinforced novolac composites made a significant contribution to the literature by introducing a novel and eco-friendly approach to enhance material properties. Their use as a filler material provided insights into sustainable novolac composites, offering potential applications in various industries, such as electronics and aerospace, with improved mechanical and thermal properties.

Publisher

SAGE Publications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3