A quasi-transient coupling approach to the modeling of conjugate heat transfer in the autoclave

Author:

Zhu Junhong1ORCID,Frerich Tim2,Dimassi Adli1,Droste David1,Herrmann Axel S3

Affiliation:

1. Department of Modelling & Simulation Faserinstitut Bremen e.V., Germany

2. CTC GmbH, Germany

3. University of Bremen, Germany

Abstract

Structural aerospace composite parts are generally cured in an autoclave. To achieve a homogeneous curing, computational fluid dynamics simulations have been increasingly used in thermal optimization. However, a transient computational fluid dynamics simulation of autoclave processing is resource intensive. This article outlines the concept of a quasi-transient coupling strategy to deal with the conjugate heat transfer problem inside an autoclave. In this approach, a computational fluid dynamics model is coupled with a finite element method (FEM) model through incorporating an empirical-based analytic equation, which describes the dependence of the heat transfer coefficient on pressure and temperature, into the computational fluid dynamics computations. This approach bridges the temporal disparities between the fluid and the solid, thus minimizing the global computing time. To validate this method, two simulation cases have been studied. In both cases, two different coupling computations are compared, namely a full-transient simulation as the reference computation and the introduced quasi-transient simulation. First, the quasi-transient coupling approach is implemented by performing the transient heat transfer analysis on a flat plate. The results indicate that this approach can predict accurate transient temperature fields, and the computational effort is reduced by up to 87%. Subsequently, this method is used in a real autoclave and validated by known experimental data. The simulation results are in good agreement with the experimental results, with a mean temperature error lower than 1.9°C. This indicates the capability and efficiency of this approach in solving a conjugate heat transfer problem for autoclave processing.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3