Influence of structural physiognomies of pawpaw fiber–glass fiber hybrid–based green composites on mechanical properties and biodegradation potential of epoxy composites

Author:

Oladele Oluwole I1,Makinde-Isola Baraka A1,Adediran Adeolu A2ORCID,Ayanleye Oluwaseun T1,Taiwo Samuel A1

Affiliation:

1. Department of Metallurgical and Materials Engineering, Federal University of Technology, Akure, Nigeria

2. Department of Mechanical Engineering, Landmark University, Omu Aran, Nigeria

Abstract

The demand for durable and sustainable eco-friendly materials in recent times has caused many researchers to consider the use of plant fibers in composite development. In this research, the suitability of treated pawpaw fiber as a substitute for glass fiber was considered. The pawpaw fiber was extracted from the plant stem by dew retting and treated before been incorporated into the epoxy matrix. Two distinct fiber structures in linear and network forms were identified, separated, and used for the development of the composites. The composites were produced by incorporating a fixed amount of pawpaw fiber with a varied amount of glass fiber within 3–15 wt% in epoxy-based polymer matrix after which mechanical and biodegradation tests were carried out on the developed samples. Fractured surface morphology was also observed using a scanning electron microscope. The results revealed that the fiber structures influence the properties of the material. While mechanical properties were mostly enhanced by treated linear structure pawpaw fiber, biodegradation was highly promoted by treated network structure pawpaw fiber. Tensile (except for strain), hardness, and flexural properties were enhanced by the linear-structured treated pawpaw fiber, while biodegradability, impact, and tensile strain were improved by the network-structured treated pawpaw fiber compared to the control sample.

Funder

African Academy of Sciences

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3