Industrial approach to circularity of polymer composites: Processing, characterization, mechanical testing, and wear regression

Author:

Hussain Abrar1ORCID,Podgursky Vitali1,Goljandin Dmitri1,Antonov Maksim1ORCID

Affiliation:

1. Department of Mechanical and Industrial Engineering, Tallinn University of Technology, Tallinn, Estonia

Abstract

Cotton, polyester, and polyethylene terephthalate are the most common types of polymers that produce huge wastes. The circularity of these post-consumer (PC) waste faces operational problems during processing. In this innovative research, the relationship between circularity, surface characterization, mechanical and tribological testing of fiber reinforced (cotton, polyester), and particulate (polyethylene terephthalate) composites is explored for industrial pilot production. Cutting model can control the size of fibers during grinding. The fiber reinforced composites (FRCs) with 10% (by weight) fiber loadings are found as operational candidates for structural, automotive, and medical applications due to suitable tensile strength (26–29 MPa), percentage of extension (10%) and abrasive wear (3 × 10−6 mm3/Nm). An increase in fiber content produces micro-defects like asperities, rough areas, voids, cracks, and pits in recycled composites. Therefore, the particulate and FRCs with 40% (by weight) fiber loadings become hard and brittle. However, these composites (especially with 40% wt. fiber loadings) exhibit reasonable elastic modulus (1526–2751 MPa) and abrasive wear (6.5 × 10−6 mm3/Nm). The ductile to brittle transition effect has appeared in all composites (with 30% wt. fiber content) due to continuous fiber addition, micro-defects creation and dual phase presence. In conclusion, natural and synthetic PC wastes can be utilized for sustainable processing of commercial polymer composites. Moreover, injection molding, polymer characterization, tensile testing, abrasion evaluation, and regression analysis can be introduced for the transformation of open-loop into closed-loop manufacturing.

Funder

Tallinn University of Technology

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3