Impact Fatigue of Short Glass Fiber Reinforced Polycarbonate

Author:

Ho Kye-Chyn,Hwang Jiun-Ren,Doong Ji-Liang1

Affiliation:

1. Department of Mechanical Engineering, National Central University, Chung-Li, Taiwan 32054, RO.C.

Abstract

The present study analyzes the impact properties of polycarbonate reinforced with 0, 20 and 30 wt% short glass fiber. The specimens were prepared under various injection molding conditions, such as filling time, melting temperature and mold temperature. Impact tests were performed with a Dynatup drop weight impact tester at different impact energies (1.2, 0.16, 0.12 and 0.095 J). The fracture mechanism was examined with a scanning electron microscopy. The results indicated that the specimen reinforced with 30 wt% short glass fiber showed the highest impact energy absorbed, together with the highest impact load in single impact. The absorbed energy of 30 wt% reinforced is approximately 15% higher than that of 20 wt% reinforced and about 10 times higher than that of unreinforced polycarbonate. The polycarbonate with 30 wt% short glass fiber reinforced has the highest impact number and accumulation energy in repeated impacts. The accumulation energy is approximately 15% higher than that of 20 wt% reinforced polycarbonate. The thicker the skin layer, the stronger the interfacial adhesion. The ranking of impact number and accumulation energy is in good agreement with the distributions of the skin layer thickness in repeated impacts. The splits and tearing mechanisms dominate the single impact fracture in unreinforced polycarbonate, while the fiber pull-out and fiber breakage are the major fracture mechanisms in repeated impacts for polycarbonate composites.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3