In-situ pyrolysis: A novel technique for the dispersion of carbon particles in thermoplastics

Author:

Akram Mohamad1,Taha Iman1,Ghobashy Mohamed M2

Affiliation:

1. Faculty of Engineering, Design and Production Engineering Department, Ain Shams University, Cairo, Egypt

2. Polymer Department, National Center for Radiation Research and Technology (NCRRT), Cairo, Egypt

Abstract

An adequate dispersion of fine particles is essential for improved properties in particle-reinforced composites. State-of-the-art methods mainly rely on mechanical (shearing) dispersion methods that do not yield the requested homogeneity within the final composite. This leads to a deterioration and inhomogeneity of mechanical properties. Other non-conventional methods such as in-situ polymerisation or solution compounding are not yet applicable on an industrial scale. This study tackles these problems and provides a novel method for the fabrication of well-dispersed particle-reinforced polymer composites while making use of conventional machinery on the one hand and allowing industrial applicability on the other hand. The presented technique makes use of the pyrolysis of a low thermally stable polymer within a conventional melt compounding process to produce well dispersed carbon particles throughout a thermoplastic matrix in an in-situ process. For this purpose, Carboxymethylcellulose particles are used. The selection of decomposition parameters around the processing temperature of polypropylene yields well-dispersed carbon particles, as evidenced by scanning electron microscopy. This further interprets the resulting promising mechanical properties.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Water-Assisted Production of Polypropylene/Boehmite Composites;Periodica Polytechnica Mechanical Engineering;2020-03-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3