Applicability of fiber Bragg grating sensors for cure monitoring in resin transfer molding processes

Author:

Blößl Yannick1ORCID,Hegedüs Gergely2,Szebényi Gábor2,Tábi Tamás23,Schledjewski Ralf1,Czigany Tibor23

Affiliation:

1. Processing of Composites Group, Department Polymer Engineering and Science, Montanuniversität Leoben, Leoben, Austria

2. Department of Polymer Engineering, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Budapest, Hungary

3. MTA-BME Research Group for Composite Science and Technology, Budapest, Hungary

Abstract

This article examines the use of fiber Bragg grating sensors for cure monitoring purposes in resin transfer molding processes. Within a resin transfer molding test series a thermoset epoxy-amine resin system was used in combination with a woven flax fiber reinforcement. Particular attention was paid on the location of the optical fiber sensor and its sensitive Bragg grating element inside the mold cavity. Three different installation approaches were tested and the correlation of the corresponding strain response with the actual cure state of the resin system was investigated at 50°C and 70°C isothermal cure temperature, respectively. We could demonstrate that characteristic, conspicuous strain changes are directly related to the sol–gel conversion of the thermoset polymer, which was analyzed considering different approaches for the gel-point detection based on rheological measurements. With the installation of the sensor inside a controllable, capsuled resin volume, we could achieve the most reliable strain response that provides capabilities to give in-situ information of the cure state beyond the gelation point.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3