Graphene nanoplatelet, multiwall carbon nanotube, and hybrid multiwall carbon nanotube–graphene nanoplatelet epoxy nanocomposites as strain sensing coatings

Author:

Bragaglia Mario1ORCID,Paleari Lorenzo1ORCID,Lamastra Francesca R1,Puglia Debora2,Fabbrocino Francesco3,Nanni Francesca1

Affiliation:

1. Department of Enterprise Engineering “Mario Lucertini”, University of Rome Tor Vergata, Rome, Italy

2. Civil and Environmental Engineering Department, University of Perugia, Terni, Italy

3. Department of Engineering, Telematic University Pegaso, Naples, Italy

Abstract

Strain monitoring is of great interest in order to check components structural life, to prevent catastrophic failures, and, possibly, to predict residual life in case of unexpected events. In this study, strain sensing epoxy-based coatings containing carbon nanotubes (MWCNTs), graphene nanoplatelets (GNPs), and a mix of the two (MWCNT+GNP) have been produced, with the same initial electrical resistivity, and applied on glass fiber reinforced composites. Morphological, mechanical, and electrical tests have been then performed evaluating the resistance variation and the strain sensing performance of the sensors. A theoretical model to relate the resulting gauge factors to the different types of nanofillers has been applied. The results showed that all systems present a strain sensing performance with different gauge factors (and hence sensitivity) at low strain: GNP samples showed the highest gauge factor (10.3), MWCNT samples the lowest (1.5), and the mixed system lies in the middle (4.3). From analytical analysis, the value of initial distance among conductive particles was found to be 0.3 nm in the case of MWCNT and 1.2 nm for GNP, explaining why the gauge factors of the produced sensors are different.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3