A study on moisture absorption and swelling in bio-based jute-epoxy composites

Author:

Masoodi Reza1,Pillai Krishna M.2

Affiliation:

1. School of Design and Engineering, Philadelphia University, 4201 Henry Avenue, Philadelphia, PA, USA.

2. Laboratory for Flow and Transport Studies in Porous Media, Department of Mechanical Engineering, University of Wisconsin-Milwaukee, 3200 North Cramer Street, Milwaukee, Wl, USA.

Abstract

Woven jute fibers, a class of affordable and biodegradable ‘green’ fibers, are being increasingly used as a substitute for the artificial glass and carbon fibers used in polymer composites. However, all natural fiber composites absorb water and swell in a moist environment For the first time, the swelling and weight gain behavior of bio-based composites made from jute fibers and bio-based or ordinary epoxy is presented in this experimental characterization study. Several such composites specimens were made using a low-pressure resin injection process similar to resin transfer molding; the specimens were made according to ASTM D 570 consisted of three compositions: pure resin, pure resin with a single jute fabric layer, and pure resin with two jute fabric layers. The effects of number of layers on moisture absorption, thickness swelling, volume swelling, and density were measured as a function of immersion time. It is observed that the moisture diffusion rate into composites increases with an increase in the jute-fiber-to-epoxy ratio. The type of epoxy used as the matrix appeared to have an influence on the moisture absorption percentages of the composites – the study showed that both water absorption and swellings were higher in the bio-epoxy parts compared to the epoxy parts. The swelling of composites was correlated with an increase in diameters of jute fiber in water and possibilities for the appearance of micro-cracks around fibers in composites were discussed. The data on moisture absorption, thickness swelling, and volume swelling of bio-based composites made from woven jute fibers, and bio-based and ordinary epoxies presented in this article will lead to a better understanding of how these composites react in wet environmental conditions.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 112 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3