Notch sensitivity of short and 2D plain woven glass fibres reinforced with different polymer matrix composites

Author:

Elbadry Elsayed A1,Abdalla GA1,Aboraia M1,Oraby EA12

Affiliation:

1. Mining and Metallurgical Engineering Department, Faculty of Engineering, Assiut University, Assiut, Egypt

2. Mining Engineering and Metallurgical Engineering Department, Western Australian School of Mines, Curtin University, Perth, Australia

Abstract

This research article investigated the notch sensitivity of two different glass fibre architectures, namely short and 2D plain-woven glass fibres reinforced with unsaturated polyester and epoxy matrix composites fabricated by the hand lay-up technique. This was carried out through open hole tension tests at different ratios of the specimen hole diameter to the specimen with three different values (0.1, 0.2, 0.5) compared to the unnotched specimen. The notch sensitivity of these composites was evaluated using the residual tensile strength by the application of Whitney–Nuismer Mathematical Model. The results showed that by using polyester matrix, the notch sensitivity of composites reinforced with plain-woven glass fibre is higher than that of short glass fibre at different D/W ratios. On the other hand, on testing epoxy matrixes, the notch sensitivity of composites reinforced with plain-woven glass fibre is lower than that of short glass fibre at different D/W ratios.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3