Effect of electrochemical oxidation degree of carbon fiber on the interfacial properties of carbon fiber–reinforced polyaryletherketone composites

Author:

Gao Dongting1,Yang Hongru1,Liu Gang1,Chen Chunhai1,Yao Jianan1ORCID,Li Chang2

Affiliation:

1. Center for Advanced Low-Dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China

2. Department of Mechanical Engineering, City & Guilds Building, South Kensington Campus, Imperial College London, London, UK

Abstract

Electrochemical oxidation of carbon fiber (CF) is used to enhance the interfacial adhesion of CF-reinforced polyaryletherketone (CF/PAEK) composites. The effect of current intensity parameter on surface structure of CF and interfacial properties of the corresponding thermoplastic composites are deeply investigated. The results show that the current intensity in the range of 80 A–300 A does not lead to a decrease in the mechanical property of CFs. When the current intensity is 200 A, CF/PAEK composites have the highest interfacial performance, which is mainly due to the improvement of CF surface roughness, wettability, and oxygen content. In addition, the degree of graphitization of CF surface is also a crucial factor affecting the interfacial properties of CF/PAEK. The higher the content of carboxyl groups, the more disordered the structures exist on the CF surface, which are not conducive to the strong adhesion of CF to PAEK resin. Therefore, balancing the wettability and graphitization degree of the CF surface is the key to enhancing the CF/PAEK interfacial properties by electrochemical treatment techniques.

Funder

China Scholarship Council

Fundamental Research Funds for the Central Universities

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3