Identification of mechanical and damage parameters of composite laminates based on a CPAM method

Author:

Masoumi Farshid1,Ghasemi-Ghalebahman Ahmad1,Kokabi Mohammad-Javad1

Affiliation:

1. Department of Mechanical Engineering, Semnan University, Semnan, Iran

Abstract

A new method combining experimental and numerical data is proposed to simultaneously determine the mechanical properties and damage parameters in multilayered composite plates. Studied parameters are mechanical properties of each layer, width and length of delamination zone, location of damage’s center, and interface location of the damage. In this method, the PSO optimization procedure based on a CPAM algorithm uses vibration test data along with their corresponding numerical solution. Vibration data are the plates’ natural frequencies and mode shapes obtained in the modal laboratory. In order to efficiently investigate the studied parameters, the numerical solution is investigated by a commercial finite element package. The error function constitutes two parts, one part is included by the sum of the squared differences between experimental and numerical natural frequencies and the other is based on the mode shapes data. The mode shapes’ curvatures are also utilized to achieve high sensitivity to small faults. Moreover, by applying a Gaussian disorder model to the vibrational data, the sensitivity of the method is evaluated in the presence of unwanted noises. The results confirm the robustness of the proposed study for identifying both mechanical constants and damage parameters in composite plates.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3