Dynamic mechanical properties and characterization of chemically treated sisal fiber-reinforced polypropylene biocomposites

Author:

Bassyouni M12ORCID

Affiliation:

1. Department of Chemical and Materials Engineering, King Abdulaziz University, Rabigh, Saudi Arabia

2. Department of Chemical Engineering, Faculty of Engineering, Port Said University, Port Fouad, Egypt

Abstract

The incorporation of sisal fiber as reinforcement materials for polymers will be advantageous if it is synthesized and manufactured perfectly. In this study, surface modification using polymeric diphenylmethane di-isocyanate and gamma-aminopropyltriethoxysilane was applied for further amelioration of polypropylene–sisal bonding. Surface morphology, thermomechanical properties, thermal stability, and chemical bonding were investigated using scanning electron microscopy, dynamic mechanical analysis, thermogravimetric analysis, and Fourier transform infrared spectroscopy, respectively. A number of mathematical models were studied for predicting the effect of untreated and modified sisal fiber loadings on the mechanical properties of biocomposites. Polymeric diphenylmethane di-isocyanate showed a significant improvement on the thermal and mechanical properties of polypropylene biocomposites. Fourier transform infrared spectroscopy analysis of polypropylene–sisal biocomposite showed the formation of urethane group at 3333 cm−1 in the presence of polymeric diphenylmethane di-isocyanate. Glass transition temperature of polypropylene–sisal was slightly increased to 6.8°C by chemical modification with polymeric diphenylmethane di-isocyanate. Yield strength of polypropylene–sisal (30 wt%) was enhanced by more than 50% with polymeric diphenylmethane di-isocyanate chemical treatment. Halpin–Tsai and Nielsen theoretical mathematical models showed a good agreement with experimental results of polypropylene–untreated sisal and polypropylene–treated sisal, respectively.

Funder

King Abdulaziz University

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3