Mechanical properties of all-C/C composite hybrid bonded/bolted joints

Author:

Tang Yuling1,Ren Yuhe1ORCID,Zhao Wei2,Zhou Zhengong3,Han Lu1

Affiliation:

1. Tianjin Key Laboratory of Integrated Design and On-line Monitoring for Light Industry& Food Machinery and Equipment, Tianjin University of Science & Technology, Tianjin 300222

2. North China Municipal Engineering Design & Research Institute co., ltd, Tianjin 300074

3. Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150001

Abstract

In this paper, experiments and numerical simulations were used to study the mechanical properties of all-C/C composite hybrid bonded/bolted joints. Experiments were conducted to investigate the failure mechanisms, modes, and strengths of composite single-lap joints, namely, bolted joints with and without bonds. The results demonstrated that the failure mode of all-C/C composite mechanical joints was bolt shear failure, while the failure mode of the bonded joints was cohesive force failure. In hybrid bonded/bolted joints, cohesive force failure of the adhesive layer and bolt shear failure have both been noted. The C/C composite plates of all joints were not discovered to have any evident deterioration. The load-displacement curve of the hybrid joints was a double-peak curve, the first peak load corresponds to bonding failure, and the second peak load corresponds to bolt failure. For the failure process, mode, and strength of hybrid (bonded/bolted) joints, a 3D progressive damage finite element model was proposed. It is based on the nonlinear finite element code ABAQUS and Hashion failure criteria. The VUMAT subroutine compiled Hashion failure criteria to simulate the damage of fiber and matrix in the composite material. Furthermore, the adhesive layer’s failure was simulated using the cohesive element. Comparing failure loads and failure modes to the outcomes of experiments served to validate the model. The gradual damage evolution process and failure mechanism of bonded and hybrid bonded/bolted joints were determined, as well as the mechanism by which the cohesive layer influences the mechanical properties of the hybrid bonded/bolted joints. On the mechanical characteristics of composite joints, the impacts of bolt diameter and adhesive layer modulus were investigated.

Funder

Project supported by the National Natural Science Foundation of China

National Natural Science Foundation of Tianjin

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3