Fatigue Behavior of Composites with Foamed Matrix

Author:

Kurek Krzysztof1,Bledzki Andrzej K.2

Affiliation:

1. Zentrum für integrierten Umweltschutz Landgraf-Karl-Straße 2 34131 Kassel, Germany

2. Institut für Werkstofftechnik University of Kassel Mönchebergstraße 3 34109 Kassel, Germany

Abstract

Fiber reinforced epoxy foams laminates are a new group of fiber compos ite materials. The microporous structure of these fiber composites is achieved by adding siloxanes as an expanding agent during the hardening reaction with amino-hardeners. Hydrogen released during the cross-linking reaction expands the polymer matrix. Fiber reinforced epoxy foams laminates have already found widespread industrial use. A foam system with glass fiber reinforcement was used in the production of the first load- bearing primary structures of fiber reinforced thermosets. The underbody of the Z1 model of BMW exhibts a high degree of inherent stiffness and strength. Fiber reinforced epoxy foams systems have also become successfully established in sports and in the electrical and building industries. Epoxy foams reinforced with glass and carbon fibers were selected for mechanical and microscopic tests. Given a micropore content of 27.4 vol. %, densities of 1.4 g/cm 3 were achieved with glass fiber fabric reinforced epoxy foams with a glass fiber content of 42 vol. %. Carbon fiber fabric epoxy foams exhibit the following values: density of 1.25 g/cm3 with a carbon fiber content of 50 vol. % and micropore content of 15 vol. %. The dynamic increasing load tests showed that the damping progress of glass fiber rein forced epoxy foams laminates does not depend on the micropore content. The damping progress by carbon fiber reinforced epoxy foams laminates is largely independent of the micropore content, the stresses at break diminish with increasing micropore content. The Wöhler fatigue tests on glass fiber fabric reinforced epoxy foams laminates with different micropore content produced similar Wöhler curves, which are relatively close together. In view of the initial results it can be assumed that the structure of the fiber reinforced epoxy foams laminates can favourably influence the dynamic characteristics of these com posite materials. There is evidence that the porous structure which is developed during the expansion of epoxy resin can restrict the crack progression. The crack progression de pends on the size and distribution of the micropores in the resin matrix. This means that the dynamic behavior of completely pore-free laminates need not always be linked to the better dynamic behavior of such materials.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3