Electrical Conductivity Modeling and Fabrication of Carbon Nanotubes/Silicone Rubber Composites for High Voltage Insulators in Regions With a Polluted Atmosphere

Author:

Mohammadnabi Saman1ORCID,Rahmani Khosrow1,Mataei Moghaddam Mohammad1

Affiliation:

1. Energy and Mechanical Department, Shahid Beheshti University, Tehran, Iran

Abstract

The condensation mechanism of the insulators’ surface, increase the surface electrical conductivity. The electrical conductivity of the insulator creates a high level of leakage current and causes the failure. Difference between the dew point and the surface temperature of the insulator which occur due to radiative cooling mechanism, is the major reason of the moisture condensation on the polluted insulator surface. To compensate for the temperature difference, carbon nanotubes (CNTs) are being added to the silicone rubber housing material. The main idea of this research is based on generating joule heating by reducing the surface resistance of high voltage insulators. For this purpose, a developed model based on Halpin–Tsai formulation for tensile modulus of nanocomposites is joined with the conventional power-law model for the effective electrical conductivity of silicone rubber matrix carbon nanotube composite (SMCNT). SMCNT samples are prepared with the addition of various CNT volume fractions to high temperature vulcanizing (HTV) silicone rubber by melt-blending method. The developed model reveals that the high fraction of thinner and longer CNT, thicker interphase, higher concentration of percolated CNT, lower waviness of CNT, and higher conductivity of CNT can make a higher effective conductivity for SMCNT.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3