Fatigue-resistant design of carbon/epoxy composites based on a failure tensor polynomial model by particle swarm optimization-sequential quadratic programming algorithm

Author:

Deveci Hamza Arda12ORCID,Artem Hatice Seçil2,Güneş Mehmet Deniz2,Tanoğlu Metin2ORCID

Affiliation:

1. Department of Mechanical Engineering, Faculty of Engineering and Architecture, Erzincan Binali Yıldırım University, Erzincan, Turkey

2. Department of Mechanical Engineering, Faculty of Engineering, Izmir Institute of Technology, İzmir, Turkey

Abstract

This article introduces a design procedure to find the optimum fiber orientations of carbon/epoxy composite laminates for fatigue life advancement. The approach incorporates a fatigue failure tensor polynomial model and employs a hybrid algorithm, combining particle swarm optimization and sequential quadratic programming. Firstly, material properties of quasi-static and fatigue of the carbon/epoxy composites, fabricated by the vacuum-assisted resin transfer molding method, were determined to be used in the model. Various design problems involving two optimization scenarios were then solved using the hybrid algorithm. The algorithm’s performance was also evaluated by specific test problems, confirming its speed and robustness. The optimally fiber-oriented carbon/epoxy composite laminates having maximum fatigue lives were obtained for many critical in-plane cyclic loading cases. To validate the proposed design procedure, two optimum designs were experimentally verified under uniaxial loading conditions. The results indicated a good correlation between the estimated fatigue life of the optimally designed laminates and experimental data. This methodology offers a promising approach for the design of carbon/epoxy composite laminates with superior fatigue strength, particularly significant in specific industrial applications.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3