Experimental and numerical study of basalt fibre cloth strengthened structural insulated panel under windborne debris impact

Author:

Meng Qingfei1,Hao Hong1,Chen Wensu1

Affiliation:

1. Centre for Infrastructural Monitoring and Protection, School of Civil and Mechanical Engineering, Curtin University, Bentley, WA, Australia

Abstract

Strong wind causes damages and losses around the world. The windborne debris carried by strong wind might impact on building and create openings on the building envelop, which might threaten the occupants and cause further damages to the building. To address this issue, some wind loading codes including the Australian Wind Loading Code (AS/NZS 1170:2:2011) give design requirements. The resistance capacity of oriented strand board skins structural insulated panel was investigated and proved having low resistance to the projectile impact, and could not meet the impact resistance requirement for application in cyclonic region C and D defined in Australian Wind Loading Code. In this study, basalt fibre cloth is used to strengthen oriented strand board structural insulated panel to increase its capacity to resist windborne debris impact. This paper presents experimental and numerical study of structural insulated panel with or without basalt fibre cloth strengthening under windborne debris impact. Five specimens with different configurations were tested. The dynamic responses were quantitatively compared in terms of residual speed of debris after impact. The results indicate that basalt fibre cloth enhanced the resistance capacity of oriented strand board structural insulated panel. A numerical model is developed in LS-DYNA to simulate the debris impact. The testing results are used to verify the accuracy of the numerical model, which can be used in subsequent parametric studies.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3