Effect of strain on the adiabatic shear behaviour of AZ31 magnesium alloy

Author:

Guo Wenrui12,Zhou Le12,Mao Pingli12,Wang Zhi12,Wang Feng12,Wei Ziqi12

Affiliation:

1. School of Materials Science and Engineering, Shenyang University of Technology, Shenyang, People's Republic of China

2. Key Laboratory of Magnesium Alloys and the Processing Technology of Liaoning Province, Shenyang University of Technology, Shenyang, People's Republic of China

Abstract

The effect of strain on the adiabatic shear behaviour of AZ31 magnesium alloy under high strain rate compression was studied using split Hopkinson pressure bar (SHPB). The microstructure of the specimen was characterised using optical microscopy and electron backscatter diffraction. The results indicate that the adiabatic shear sensitivity increased with the strain. The microstructure evolution of adiabatic shear deformation has been investigated. Firstly, a large number of twins and dislocations are formed and accumulate in the early stage of deformation. Subsequently, they transform into dynamic recrystallised grains, forming an adiabatic shear band (ASB) and ultimately leading to crack formation. The dynamic recrystallisation mechanism in the ASB involves twinning-induced dynamic recrystallisation (TDRX) and rotational dynamic recrystallisation (RDRX). This study has analysed the ASB mechanism, which provides a foundation for material selection and the design of magnesium alloys.

Publisher

SAGE Publications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3