Burst Tests of Filament-wound Graphite-epoxy Tubes

Author:

Chang D. J.1

Affiliation:

1. Space Materials Laboratory, Laboratory Operations, The Aerospace Corporation, 2350 E. El Segundo Boulevard, El Segundo, CA 90245, USA

Abstract

A test program was conducted to investigate the failure modes of undamaged and damaged graphite-epoxy cylindrical tubes subjected to internal pressure. Some tubes were intentionally damaged by either a longitudinal-line cut or a single-point impact. Both types of damage were intended to simulate fiber breakage caused by a local damage. The objectives of the program were to investigate the failure modes of graphite-epoxy cylindrical tubes subjected to internal pressure, with and without local damage, and to qualitatively determine the relative burst pressure degradation associated with preexisting local damage to the tubes. A high-speed motion analyzer was used to record images of the fractures. The images provide the failure mode information that was not available in existing literature. Testing was conducted under three conditions: hydraulic pressurization, pneumatic pressurization with solid inserts, and pneumatic pressurization with inert propellant inserts. A tube with a longitudinal cut can fail by three different modes: a local leakage mode, a bursting mode with fracture initiating from the cut, or a bursting mode with complete tube disintegration. In testing of impact-damaged tubes, the results show that the burst pressure decreases with increasing impact load. At an impact load of 1493N (335 lb), the burst pressure decreases by 33% compared to the undamaged condition.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3